Apr. 1976 211

Spectral Properties of Mono- and Dihydroxychromones

G. Romussi and G. Ciarallo

Istituto di Chimica Farmaceutica e Tossicologica and Istituto di Tecnica Farmaceutica, University of Genoa, Genoa, Italy

Received July 14, 1975

The uv, ir, and nmr spectra of a number of hydroxy- and methoxychromones, substituted only in the benzene ring, were studied. The results are particularly useful in determining the position of the hydroxyl groups. Chromatographic data on paper are also given.

J. Heterocyclic Chem., 13, 211 (1976).

It has become evident that derivatives of chromone not substituted in the 2- and/or 3-positions, are more abundant in nature than was previously thought (1-4). Since uv, ir and nmr spectrometric data of these compounds may be very useful in determining the attachment site of oxygen substituents in natural chromones (2-4), the spectral behaviour of 23 chromones substituted in the benzene ring only, were studied.

Uv Spectra

Synthesized chromone derivatives exhibit high intensity absorption in the 290-360 (Band I) and 240-260 (Band II) nm regions (5) (Table I). Comparison with chromone, which exhibits two major absorption peaks at 240 and 298 nm (6), shows a consistent bathochromic shift of one or both bands from the introduction of electron-donating groups.

Methylation of the 5-hydroxyl group, which prevents hydrogen-bonding with the pyrone carbonyl group, produces a hypsochromic shift of Band I (6-22 nm) and Band II (3-12 nm) ($2 \rightarrow 1$, $11 \rightarrow 9$, $13 \rightarrow 12$). Methylation of a 6-hydroxyl group results in a hypsochromic shift (7-10 nm) of Band I and does not have any appreciable effect on Band II ($4 \rightarrow 3$, $18 \rightarrow 17$, $20 \rightarrow 19$). Methylation of a 7-hydroxyl group has little effect on both bands $(6 \rightarrow 5, 23 \rightarrow 22)$. Methylation of a 8-hydroxyl group produces a small hypsochromic shift (3-8 nm) of one or both bands $(8 \rightarrow 7, 22 \rightarrow 21)$. Since uv spectral data in the identification and structural analysis of flavonoids has been amplified by the use of reagents such as sodium methylate, aluminium chloride, fused sodium acetate and boric acid-sodium acetate (7), the spectral shifts in the presence of these reagents were recorded.

Effects of Sodium Methoxide (Table 1).

Sodium methylate ionizes all phenolic groups and both bands in the hydroxychromone spectra undergo bathochromic shifts. It is consequently difficult to correlate these shifts with the phenolic groups location. No chromone showed signs of decomposition (8).

Effects of Aluminium Chloride and Aluminium Chloride-Hydrochloric Acid (Table 2).

The presence of *ortho*-dihydroxyl groups at positions 6,7 and 7,8 is detectable by means of the aluminium chloride uv spectrum, which has bathochromic shifts of either or both bands compared with methanol and aluminium chloride/hydrochloric acid spectra (18, 23). Free 5-hydroxyl groups are detected by the formation of an acid stable complex with aluminium chloride, which exhibits a strong bathochromic shift (about 60-70 nm) of Band I and a smaller one (8-14 nm) of Band II (2, 11, 13, 14, 16).

Effects of Sodium Acetate (Table 2).

This reagent either has no bathochromic shift or a slight one (6-9 nm) in Band I of 6-hydroxychromones (4, 9, 11) and greater bathochromic effect (20-60 nm) on 7- and 8-hydroxychromones. A useful diagnostic shift (4-18 nm) of Band II is observed only when the 7- or 8-hydroxyl group is free (6, 8, 14, 16, 18, 20, 22, 23). No chromone showed signs of decomposition.

Effects of Boric Acid-Sodium Acetate (Table 2).

With this reagent *ortho*-dihydroxyl groups are detectable by a bathochromic shift (8-35 nm) of Band I (11, 18, 23).

Ir Spectra.

For solubility reasons it was not possible to obtain complete solution data. In Table 3a are listed principal absorptions in the 1580-1670 cm⁻¹ region. The CO stretching band is at the highest frequency (at 1660 ± 4 cm⁻¹ in carbon tetrachloride, at 1649 ± 9 cm⁻¹ in chloroform and in the 1620-1670 cm⁻¹ region in potassium bromide). Like similar 5-hydroxychromones (9) the

e]

Derivatives	
Chromone	
οŢ	
Absorptions c	
raviolet	

OME H6 OME H OME H OME H H H H H H H OME OME	R ₈ Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	λ max, nm (log ε) (methanol) 220 (4.32), 252 (b) (4.08), 315 (c) (3.68) 223 (4.30), 255 (b) (4.09), 329 (c) (3.56) 226 (4.23), 235 (a) (4.17), 246 (a), (b) (3.90), 327 (c) (3.78) 228 (4.34), 237 (a) (4.24), 248 (a), (b) (4.01), 334 (c) (3.80) 236 (a) (4.16), 240 (4.24), 246 (b) (4.26), 281 (a) (3.89), 297 (c) (4.00), 303 (a) (3.99) 336 (a) (4.14), 241 (4.29), 248 (b) (4.26), 287 (a) (3.01)	λ max, nm (sodium methoxide) -259 (b), 364 (c)
OMe H OH H OME H H H H H H H H OME OME		220 (4.32), 252 (b) (4.08), 315 (c) (3.68) 223 (4.30), 255 (b) (4.09), 329 (c) (3.56) 226 (4.23), 235 (a) (4.17), 246 (a), (b) (3.90), 327 (c) (3.78) 228 (4.34), 237 (a) (4.24), 248 (a), (b) (4.01), 334 (c) (3.80) 236 (a) (4.16), 240 (4.24), 246 (b) (4.26), 281 (a) (3.89), 297 (c) (4.00), 303 (a) (3.99) 336 (a) (4.14) 241 (4.29), 248 (b) (4.26), 287 (a) (3.01)	
ОН Н Н ОМе Н Н Н Н Н Н ОМе ОМе		223 (4.30), 255 (b) (4.09), 329 (c) (3.56) 226 (4.23), 235 (a) (4.17), 246 (a), (b) (3.90), 327 (c) (3.78) 228 (4.34), 237 (a) (4.24), 248 (a), (b) (4.01), 334 (c) (3.80) 236 (a) (4.16), 240 (4.24), 246 (b) (4.26), 281 (a) (3.89), 297 (c) (4.00), 303 (a) (3.99)	259 (b), 364 (c)
H OH H OH H H H H H H H H OMe OMe		226 (4.23), 235 (a) (4.17), 246 (a), (b) (3.90), 327 (c) (3.78) 228 (4.34), 237 (a) (4.24), 248 (a), (b) (4.01), 334 (c) (3.80) 236 (a) (4.16), 240 (4.24), 246 (b) (4.26), 281 (a) (3.89), 297 (c) (4.00), 303 (a) (3.99) 348 (b) (4.36) 387 (a) (3.01)	•
H OH H H H H H H OMe OMe		228 (4.34), 237 (a) (4.24), 248 (a), (b) (4.01), 334 (c) (3.80) 236 (a) (4.16), 240 (4.24), 246 (b) (4.26), 281 (a) (3.89), 297 (c) (4.00), 303 (a) (3.99) 348 (b) (4.36) 287 (a) (3.01)	
H H H H H H OMe OMe OMe		236 (a) (4.16), 240 (4.24), 246 (b) (4.26), 281 (a) (3.89), 297 (c) (4.00), 303 (a) (3.99)	243, 264 (a), (b), 378 (c)
H H H H H OMe OMe OMe		936 (a) (414) (24) (499) 948 (b) (496) 987 (a) (3 91)	1
H H H H ОМе ОН ОМе ОМе		300 (c) (3.99)	256 (b), 338 (c)
H Н ОМе ОН ОМе ОМе		222 (4.37), 253 (b) (4.11), 312 (c) (3.72)	1
OMe OH OMe OMe		224 (4.24), 255 (b) (4.10), 315 (c) (3.63)	234, 268 (b), 300 (a), 356 (c)
OMe OMe		232 (4.27), 250 (a), (b) (4.00), 338 (c) (3.71)	246, 260 (a), (b), 287 (a), 385 (c)
****		232 (4.36), 251 (a), (b) (4.02), 335 (c) (3.69)	1
HO HO	Н	233 (4.21), 262 (b) (4.08), 360 (c) (3.54)	251, 271 (a), (b), 300 (a), 409 (c)
Н		227 (4.16), 247 (4.25), 254 (b) (4.25), 287 (c) (3.91)	:
НО	π	227 (4.10), 252 (a) (4.24), 257 (b) (4.26), 293 (c) (3.85), 310 (a) (3.68)	246 (a), 260 (b), 266 (a), 285 (a), 347 (c)
	н	224 (a) (4.15), 253 (a) (4.26), 258 (b) (4.28), 296 (c) (3.88), 320 (a) (3.67)	267 (b), 333 (c)
Н		221 (4.35), 256 (b) (4.12), 338 (c) (3.62)	į
н но	НО	223 (4.16), 259 (b) (4.12), 306 (3.33), 360 (c) (3.47)	240, 267 (b), 332, 402 (c)
H 0Me		235 (4.27), 246 (a), (b) (3.98), 277 (3.78), 318 (c) (4.02)	· 4
НО Н		227 (a) (4.19), 245 (a), (b) (3.90), 282 (3.69), 327 (c) (3.94)	234 (a), 250 (a), (b), 352 (c)
OMe		228 (a) (4.20), 237 (4.20), 258 (b) (4.03), 332 (c) (3.71)	1
	НО	229 (a) (4.08), 239 (4.09), 261 (b) (4.01), 342 (c) (3.60)	230 (a), 290 (b), 379 (c)
н н		219 (4.26), 245 (a) (4.29), 250 (b) (4.34), 298 (c) (3.99)	1
Н	но а	220 (4.13), 253 (a) (4.30), 258 (b) (4.36), 303 (c) (3.76)	245, 273 (b), 299 (a), 369 (c)
		252 (a) (4.31), 258 (b) (4.37), 305 (c) (3.81)	272 (b), 309 (a), 363 (c)

Table 2

	Ut	raviolet Absorp	Utraviolet Absorptions of Chromone Derivatives	ne Derivatives		
Compound No.	λ max, nm (aluminum chloride)	γ γ (p)	Δ λ (c)	λ max, nm (aluminum chloride/hydrochloric acid)	(p) y \(\nabla \)	Δ λ (c)
	229, 246, 264 (b), 284 (a), 387 (c)	6	58	230, 247, 264 (b), 281 (a), 388 (c)	6	59
1 =	253, 276 (b), 295 (a), 423 (c)	14	63	250, 276 (b), 296 (a), 424 (c)	14	0 t
<u>. c</u>	223 (a) 253 (a) 266 (b), 310, 370 (c)	6	2.2	223 (a), 254 (a), 267 (b), 307, 370 (c)	01 °	÷
2 7	(b) 311, 368 (c)	8	72	267 (b), 310, 370 (c)	6	4. 4.
<u> </u>	250 (2), 325, 433 (c)	6	73	249, 267 (b), 323, 436 (c)	∞	9,
5 6	997 375 (c)	;	48	228 (a), 246 (a), (b), 287, 328 (c)	:	ı
2 8	270 (b), 313, 340 (c)	12	35	252 (a), 258 (b), 304 (c)	1	1
palloumoj	у мах. пт	(q) γ ∇	Δ λ (c)	λ max, nm	Δ λ (b)	Δ λ (c)
No.	(sodium acetate)			(sodium acetate/boric acid)		
<	3	;	:	(i)	;	1
† u	3 3	2	37	(a)	1	1
οα	€	11	40	254 (b), 314 (c)	1	1
o	ે ઉ	1	9	(a)	1	; ;
, =	(a), (b), 369 (c)	;	6	3	:	cI.
14	€	6	37	(E)	:	ı
<u> </u>	€	4	20	<u>a</u>	1	; '
<u> </u>	$\tilde{\mathfrak{S}}$	9	24	(E)	1	œ
2 8	Ξ	18	24	<u>a</u>	1	:
3 8	\Im	15	65	(a)	1	1 (
ង	273 (b), 305 (a), 362 (c)	15	22	264 (b), 310, 340 (c)	9	35

(a) Shoulder. (b) Band II. (c) Band I.

Table 3a

Ir Absorptions of Chromones in the 1580-1670 cm⁻¹ Region

Compound No.	Carbon Tetrachloride	Chloroform	Potassium Bromide	Compound No.	Carbon Tetrachloride	Chloroform	Potassium Bromide
1	1664 1606	1654 1609	1638 1600	13	1657 1630	1658 1625	1657 1610
2	1656 1625	1653 1620	1656 1615	14			1640 1610
3	1595 1659	1596 1648	1618	15	1664	1656 1606	1662 1599
4	1619 	1619 	1581 1627	16		1588 1659	1581 1655
			$\frac{1612}{1582}$			1624 1599	1610 1583
5	1663 1625 1610	1648 1625 1599	1620 1590	17	1655 1624 1608	1640 1625 1601	1638 1620 1597
6			1625	18			1623 1580
7	1661 1606	1649 1604	1658 1600	19	1659 1612 1580	1640 1610 1580	1640 1604 1572
8			1624				
9	1660 1621	1648	1636 1597	20	-		1636 1587
10	1661 1619	1649 1600	1648	21	1659 1619 1599	1649 1618 1597	1640 1618 1595
11	1656 1628	1655 1625 1595	1659 1619	22		1655 1631 1605	1620 1587
12	1659 1625 1609	1650 1624 1608	1645 1631 1585	23			1624

stretching band of the strongly chelated CO in compounds 2, 11, 13, is unaffected by change of solvent, whereas the corresponding 5-methoxychromones 1, 9, 12, show a solvent shift of the CO band ($\Delta\nu\sim10~{\rm cm}^{-1}$). The intense band at $1628\pm3~{\rm cm}^{-1}$ in carbon tetrachloride solution of 2, 11, 13, could be probably the second band of a doublet CO absorption arising from a Fermi resonance (10).

The ir spectra of the hydroxychromones in potassium bromide are complex in the 2400-3600 cm⁻¹ region and the O-H bands can be overlapped by C-H bands (Table 3b). All spectra contain one band, generally distinct, in the 3060-3090 cm⁻¹ region; since the same band is present in the corresponding methoxychromones, this absorption was associated with aromatic and pyronic C-H vibration. All methoxyhydroxy- and methoxychromone

spectra contain a weak band at 2830-2840 cm⁻¹, which is associated with the C-H stretching of the methoxyl group. 5-Hydroxychromone (2) and 5-hydroxy-7-methoxychromone (13) show a weak absorption envelope, which extends from 2400 to 3300 cm⁻¹ underlying the C-H stretching frequencies at 3060 and 3079, 3010, 2975, 2840 cm⁻¹ respectively. This spectral behaviour parallels that of similar 5-hydroxychromones (9). The ir spectra of the other hydroxychromones show an absorption envelope in the 2400-3600 cm⁻¹ region, generally underlying the C-H stretching frequencies and other bands, which could be associated with the stretching modes of the OH group. The 5,6-(11); 6,7-(18); 6,8-(20); 7,8-dihydroxychromone (23) and 7-methoxy-8-hydroxychromone (22) spectra show O-H stretching bands at sufficiently high frequencies (at 3190; 3490 and

Table 3b Ir Absorption of Hydroxychromones in the 2400-3560 cm⁻¹ Region

	2400-3300	ciii Region	
Compound No.	Carbon Tetrachloride	Chloroform	Potassium Bromide
2	3300- 2400 (a)	3300- 2400 (a)	3300- 2400 (a) 3060
4			3300- 2400 (a) 3060
6			3300 - 2400 (a) ~ 3090 ~ 2920 2800 2690 2590
8		-	3300- 2400 (a) 3060 2956 2850 2758 2670 2610 2570
9	3505 2923 2830	3502	3300- 2400 (a) 3070 2985 2931 2840
11	3540 3200- 2500 (a)	3530	3500 - 2400 (a) ~ 3190 3070 2725
13	3300- 2400 (a) 3000 2960 2930 2840	-	3300- 2400 (a) 3079 3010 2975 ~ 2840
14		-	3300 - 2400 (a) ~ 3060 ~ 2720 2610
16	-	3560	3300 - 2400 (a) ~ 3070 ~ 2950 ~ 2860

3310; 3510 and 3210; 3510 and 3330; ~ 3300 cm⁻¹ respectively) so that they can be recognized. The solution

Table 3b (Continued)

Ir Absorption of Hydroxychromones in the $2400\text{-}2560 \text{ cm}^{-1} \text{ Region}$

	Compound	Carbon Tetrachloride	Chloroform	Potassium Bromide
)	18			3600- 2400 (a) 3490 3310 3070 2800 ~ 2720 ~ 2590
1)	20		-	3510 3400- 2400 (a) 3210 3060 2970 2610
ι)	22	-	3520 2838	3500- 2400 (a) ~ 3300 ~ 3080 2961 2930 2838 2730
ı) ı)	23 (a) Absorp	 tion envelope.	-	3600- 2500 (a) 3510 3330 3070 ~ 2880 ~ 2730

data of the less soluble compounds are incomplete in the hydroxyl region owing to the weakness of the band.

Nmr spectra.

Proton signals of chromones generally occur in a number of well separated groups (Table 4). Methoxyl proton signals appear as singlets in the region 6.0-6.3 τ . The C-2 and C-3 protons occur as doublets (J = 6 Hz) in the ranges 1.6-2.2 and 3.6-4.0 τ respectively (11). It is difficult to determine the effect of the substituents in the aromatic ring on C-2 and C-3 protons. However, it is evident that the strong CO chelation in the 5-hydroxychromones produces a resonance of the pyronic protons at a lower field. A lesser similar effect is present in the 8-hydroxychromones; this confirms the possibility of weak chelation of heterocyclic oxygen with the 8hydroxyl group (12). The aromatic ring protons appear in the region 2.0-3.8 τ . The C-5 proton, which is deshielded by the pyrone carbonyl group, generally

Table 4

Nmr Data at 60 MHz; Coupling Constants in Hz

		Com	Compound					3. 5.			
Š.	Rs	R	R,	R	Solvent	H-2	H-3	.	Assignment of Signals (a)		c
-	$\overline{}$, =	==	· =	DMSO-dz	1 93 d	389 4	611 6	911	R7	К8
							$J_{3,2} = 6$	2 (14.)	$J_{6,7} = 8; J_{6,8} = 1$	$J_{7,6} = 8; J_{7,8} = 8$	2.92, dd $J_{8,7} = 8$; $J_{8,6} = 1$
7	ЮН	Ξ	Н	H	DMSO-d ₆		3.59, d	-2.61, s	3.23, dd	2.36, t	2.98, dd
($J_{2,3} = 6$	$J_{3,2} = 6$		$J_{6,7} = 8; J_{6,8} = 1$	$J_{7,6} = 8; J_{7,8} = 8$	$J_{8,7} = 8; J_{8,6} = 1$
က	Ξ	OMe	Н	Ξ	CDCl3	2.17, d	3.67, d	2.43, d	6.09, s	2.73, dd	2.62,d
					DMSO-d ₆	$J_{2,3} = 0$ 1.72, d	$J_{3,2} = 6$ 3.66, d	$\int_{5.7} = 3$ 2.13-2.88	6.11, s	$J_{7,8} = 9; J_{7,5} = 3$ 2.13-2.88	$\int_{8.7} = 9$ 2.13-2.88
,						$J_{2,3}=6$	$J_{3,2} = 6$				
4	H	НО	н	Ξ	DMSO-d ₆	1.85 , d $I_{2.2} = 6$	$3.79,d$ $1_{2.5} = 6$	2.71, m	0.06, s		2.54,dd
ι	Ħ	ם	OMO	-	1 0000	5.7.5	J3,2 - U			17.8 = 8; 17.5 = 3	$J_{8,7} = 8; J_{8,5} = 1$
•	=	=	ONE	E	DWD-0-de	$J_{2,3} = 6$	3.70, d J3.2 = 6	2.02, d [s.s = 9.3	2.92, dd $I_{c,c} = 0.3 \cdot I_{c,c} = 9$	6.06, s	2.90, d I – 3
9	Η	Η	НО	Η	DWSO.d.	1 83 4	3.71	3.09		•	7 = 9,8
		:	;	:	900000	$J_{2,3} = 6$	$J_{3,2}=6$	$J_{5,6} = 8; J_{5,8} = 1$	3.00, dd $J_{6,5} = 8$; $J_{6,8} = 2.5$	-0.86, s	3.07, m
7	H	Н	Н	0Me	CDC13	2.08, d	3.64, d	2.23, dd		2.85. dd	5 98 8
					DMSO-de	$J_{2,3} = 6$ 1.67. d	$J_{3,2} = 6$	$J_{5,6} = 8; J_{5,7} = 2.5$	$\int_{6.5} = 8; \int_{6.7} = 8$	$J_{7,5} = 2.5; J_{7,6} = 8$	2,5,5
						$J_{2,3} = 6$	$J_{3,2} = 6$		2.23-2.10	2.23-2.10	6.01, s
ω	Ή	н	Н	НО	9p-0SWQ	1.75, d $J_{2,3} = 6$	3.70, d $I_{3.2} = 6$	2.39-2.99	2.39-2.99	2.39-2.99	-0.54, s
o	OMo	16	=	=	000	5 5 5 5	33,5				
ກ	OMe	НО	Ξ	Ξ	DMSO-d ₆	$1.97, d$ $J_{2,3} = 6$	$3.92, d$ $J_{3,2} = 6$	6.28, s	0.59, bs	2.76 or 2.81, d $J_{7,8} = 9$	2.76 or 2.81, d $I_{8,7} = 9$
10	ОМе	OMe	н	н	DMSO-d ₆	1.89, d $I_{2,3} = 6$	3.84, d	6.10 or 6.21, s	6.10 or 6.21, s	2.44 or 2.64, d	2.44 or 2.64, d
=======================================	ОН	ОН	Ξ	Ξ	DMSO.4	1 60 4	35.2			6.8 ± 9	18.7 = 9
			;	:	90	$J_{2,3}=6$	$J_{3,2}=6$	-z.50, bs	0.59, bs	2.71 or 3.02, d $J_{7,8} = 9$	2.71 or 3.02, d $\int_{8.7} = 9$
12	0Me	I	OMe	H	DMSO-de	2.01, d	3.89, d	6.11 or 6.14, s	3.40 or 3.52, d	6.11 or 6.14, s	3.40 or 3.52, d
ç		:	,	;		$J_{2,3} = 0$	$J_{3,2} = 6$		$J_{6,8} = 2$		$J_{8,6} = 2$
<u> </u>	НО	I	0.Me	H	DMSO-de	1.75, d Lone 6	3.68, d	-2.75, bs	3.63, d	6.13, s	3.41, d
7	110	=	110	=		12,3 - 0	13.2 - 0		16.8 = 2		$J_{8,6} = 2$
<u>t</u>	5	5	u 0	Ę	DOSMO-de	$1.83, d$ $J_{2,3} = 6$	$3.71, d$ $J_{3,2} = 6$	-2.76, s	$3.77 \text{ or } 3.62, \text{ d}$ $J_{6.8} = 2.5$	-0.91, s	$3.62 \text{ or } 3.77, \text{ d}$ $I_{8.6} = 2.5$
<u>1</u>	0Me	н	Н	ОМе	DMSO-d ₆	1.83, d $J_{2,3} = 6$	$3.76, d$ $J_{3,2} = 6$	6.09 or 6.16, s	2.65 or 3.11, d $J_{6.7} = 8.4$	2.65 or 3.11, d $J_{7,6} = 8.4$	6.09 or 6.16, s

Table 4 (Continued)

Nmr Data at 60 MHz; Coupling Constants in Hz

		(-						Assignment of Signals (a)		
		Comp	Compound			:	:	c	~	R,	ጼ
No.	No. Re	R_6 R_7	R_7	R_8		H-2	H-3	Rs	911		
10	OH	H	н	НО	DMSO-d ₆	1.67, d $I_{2,2} = 6$	3.63, d $I_{2.2} = 6$	-1.82, s	2.83 or 3.37, d $J_{6.7} = 8.4$	2.83 or 3.37, d $J_{7,6} = 8.4$	0.38, s
17	Н	OMe	ОМе	Н	DMSO-de	1.80, d	3.72, d	2.65, s	6.05 or 6.11, s	6.05 or 6.11, s	2.87, s
8	Н	НО	Н0	н	DMSO-d ₆	$J_{2,3} = 0$ 2.15, d	$J_{3,2} = 0$ $4.02, d$	2.91, s	-0.10, bs	-0.10, bs	3.32, s
19	Ξ	OMe	н	0.Me	CDCl ₃	$J_{2,3} = 0$ $2.12, d$	$J_{3,2} = 0$ $3.68, d$	2.90, d	6.06 or 6.14, s	3.25, d	6.06 or 6.14, s
2	:				DMSO-d ₆	$J_{2,3} = 6$ 1.75, d	$J_{3,2} = 6$ 3.67, d	$\int_{S,7} = 3$ 3.04, ns	6.06 or 6.14, s	J7.5 - 5 3.04, ns	6.06 or 6.14, s
8	Ξ	110	=	НО	DMSO.d.	$\int_{2,3} = 6$	$J_{3,2} = 6$ 3.76. d	3.23, ns	-0.33 or 0.26, s	3.23, ns	-0.33 or 0.26, s
₹	E	5	=	100	900000	$J_{2,3} = 6$	$J_{3,2} = 6$:	
7	Н	н	ОМе	OMe	DMSO-d ₆	1.71, d $I_{2,2} = 6$	3.70, d $I_{3.2} = 6$	2.21, d $\int_{5.6} = 8.4$	2.72 , d $\int_{6.5} = 8.4$	5.99 or 6.09, s	5.99 or 6.09, s
8	н	Ξ	OMe	Н0	DMSO-d ₆	1.83, d $I_{2,3} = 6$	3.81, d $I_{2.2} = 6$	2.55, d 1 _{6.6} = 8.4	2.86, d $J_{6.5} = 8.4$	6.08, s	$0.30, \mathrm{bs}$
ន	н	Н	НО	НО	DMSO-d ₆	1.76, d $1.76, d$ $1_{2,3} = 6$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.53, d Js.6 = 8.4	2.99, d J _{6.5} = 8.4	0.10, bs	$0.10, \mathrm{bs}$

(a) The positions of the signals have, wherever possible, been given in τ values. In the case of complex multiplets the limits of intervals in which the signals appear are given. Multiplicity is after τ values.

Table 5

Rf Data of Chromone Derivatives

		Compound		R ₅ 0	Solvent	System	
No.	R ₅	R ₆	R ₇	R ₈	A (a)	B (b)	Fluorescence (c)
1	OMe	Н	Н	Н	0.83	0.82	light blue
2	ОН	Н	H	H	0.78 (d)	0.90 (d)	
3	Н	OMe	Н	Н	0.81	0.87	bluish
4	Н	OH	H	H	0.74	0.87	pale violet
5	Н	Н	OMe	Н	0.80	0.87	yellowish
6	Н	Н	ОН	Н	0.75	0.88	yellowish green
7	H	Н	Н	OMe	0.81	0.85	bright blue
8	Н	Н	Н	ОН	0.70 (d)	0.84 (d)	
9	OMe	ОН	Н	Н	0.84	0.85	yellowish green
10	OMe	OMe	Н	Н	0.87	0.85	yellowish green
11	ОН	ОН	Н	Н	0.69	0.82	dark absorbing
12	OMe	Н	OMe	Н	0.80	0.81	light blue
13	OH	H	OMe	Н	0.68	0.89	dark absorbing
14	ОН	Н	ОН	Н	0.63	0.89	dark absorbing
15	OMe	H	Н	OMe	0.82	0.80	yellowish green
16	OH	Н	Н	ОН	0.69	0.83	dark absorbing
17	H	OMe	OMe	Н	0.79	0.83	blue violet
18	H	OH	OH	Н	0.64	0.78	mauve
19	Н	OMe	H	OMe	0.79	0.87	bluish
20	Н	OH	H	OН	0.65	0.77	blue
21	Н	Н	OMe	OMe	0.85	0.86	yellowish green
22	Н	Н	OMe	ОН	0.70 (d)	0.79 (d)	, ·
23	Н	Н	ОН	OH	0.63 (d)	0.74 (d)	

(a) Acetic acid:water = 15:85 (Rutin: Rf = 0.55). (b) t-Butyl alcohol:acetic acid:water = 3:1:1 (Rutin: Rf = 0.45). Commercial Rutin was used, whose properties (m.p., uv, Rf) are in agreement with those given by T. A. Geisman (5) and T. J. Mabry, et al., (7). (c) Spots were located by irradiation at 254 nm. (d) Spots were located by spraying with a solution of diazotized sulphanilic acid.

absorbs at a lower field than the other aromatic protons, but in the 6-hydroxychromone (4) the C-5 proton, which is also shielded by the C-6 hydroxyl, occurs at a higher field than the C-8 proton. The strongly chelated 5-hydroxyl group shows a consistent absorption at a lower field than the other hydroxyl protons.

EXPERIMENTAL

The uv spectra were measured on an Optica CF 4 spectrophotometer with Mabry's procedure (7); the ir spectra were determined with a Perkin Elmer Model 257 spectrophotometer; the nmr spectra were recorded with a Perkin Elmer Model R 12 spectrometer using TMS as the internal reference. The chromatograms were performed on No. 1 Whatman paper with descending technique (Table 5).

Synthesis and Characterization of the Chromones.

The chromones were prepared by condensation of the appropriate o-hydroxyacetophenone derivatives with dry ethyl formate in the presence of sodium. The methyl ethers were demethylated with hydriodic acid or with anhydrous aluminium chloride.

The following compounds were prepared as described previously: 5-methoxychromone (1) (13); 5-hydroxychromone (2) (14); 6-methoxychromone (3) (15); 6-hydroxychromone (4) (16); 7-methoxychromone (5) (15); 7-hydroxychromone (6) (17); 5,6-dimethoxychromone (10) (20); 5,7-dimethoxychromone (12) (21); 5-hydroxy-7-methoxychromone (13) (21); 5,7-dihydroxychromone (14) (21); 6,7-dimethoxychromone (17) (22); 7,8-dimethoxychromone (21) (24); 7-methoxy-8-hydroxychromone (22) (12); 7,8-dihydroxychromone (23) (25).

8-Methoxychromone (7).

This chromone was synthesized from 2-hydroxy-3-methoxy-acetophenone (18) by the procedure adopted for 5 (yield 60%) and purified by crystallization as needles from water, m.p. 133-135°.

Anal. Calcd. for $C_{10}H_8O_3$: C, 68.18; H, 4.58. Found: C, 68.22; H, 4.74.

8-Hydroxychromone (8).

The chromone 7 (0.8 g., 0.005 mole) was refluxed with 57% hydriodic acid (7 ml.) for 3 hours and cooled. Water (5 ml.) was added and the precipitate (0.7 g., 90%) purified by crystallization from dimethylformamide-water, m.p. at about 285° dec.

Anal. Calcd. for $C_9H_6O_3$: C, 66.67; H, 3.73. Found: C, 66.72; H, 3.74.

5-Methoxy-6-hydroxychromone (9).

A mixture of 2,5-dihydroxy-6-methoxyacetophenone (19) (1.8 g., 0.01 mole), ethyl formate (30 ml.) and powdered sodium (1.15 g., 0.05 mole) was maintained with stirring at 0° for 3 hours and overnight at room temperature. Water (25 ml.) was added and the excess ethyl formate was removed by evaporation. The solution was acidified with concentrated hydrochloric acid, heated on a water bath for 15 minutes, evaporated and the residue chromatographed on silica gel. Elution with chloroform-diethyl ether (1:1) gave 9 (0.4 g., 20%) which was purified by ethanol-light petroleum crystallization, m.p. 180-182°.

Anal. Calcd. for $C_{10}H_8O_4$: C, 62.50; H, 4.20. Found: C, 62.68; H, 4.20.

5,6-Dihydroxychromone (11).

This chromone was derived from 10 and 15 (57% hydriodic acid, refluxing) by the procedure adopted for 8 (yield 78 and 90%) and purified by crystallization as yellow needles from ethanolwater, m.p. 192-193°.

Anal. Calcd. for C₉H₆O₄: C, 60.68; H, 3.39. Found: C, 60.57; H, 3.47.

S. Raychaudhuri (20) only reports a m.p. 170° for 5,6-dihydroxychromone derived from 5,8-dimethoxychromone by demethylation and Wessely-Moser rearrangement with hydriodic acid, but in our case 11 was completely methylated (dimethylsulphate, anhydrous potassium carbonate, refluxing acetone) and purified by chromatography on silica gel (ether) and the methyl ether crystallized from carbon tetrachloride was identical (m.p., m. m. p., ir) with 10.

5,8-Dimethoxychromone (15).

2-Hydroxy-3,6-dimethoxyacetophenone (18) and ethyl formate in the usual manner (21) gave 2-hydroxy-5,8-dimethoxychroman-4-one (yield 75%), which was purified by crystallization as needles from ethanol-water, m.p. 143°; ir (potassium bromide): 3375, 3235, 1665 cm⁻¹; nmr (DMSO-d₆): τ 2.43 (d, J = 5 Hz, 1H) 2-OH, τ 2.83 (d, J = 9 Hz, 1H) and 3.47 (d, J = 9 Hz, 1H) aromatic protons, τ 4.22 (m, 1H) 2-H, τ 6.26 (s, 6H) 5-OCH₃ and 8-OCH₃, τ 7.23 (m, 2H) > CH₂.

Anal. Calcd. for $C_{11}H_{12}O_5$: C, 58.93; H, 5.39. Found: C, 59.26; H, 5.52.

This chroman-4-one (1.1 g., 0.005 mole) in ethanol (10 ml.) and concentrated hydrochloric acid (0.5 ml.) was refluxed for 15 minutes. After removal of the solvent, the crude 5,8-dimethoxychromone was crystallized from carbon tetrachloride (0.4 g., 40%) m.p. 129-130° (26).

Anal. Calcd. for $C_{11}H_{10}O_4$: C, 64.07; H, 4.89. Found: C, 64.30; H, 5.24.

5,8-Dihydroxychromone (16).

5,8-Dimethoxychromone (0.25 g., 0.0012 mole) in dry benzene (20 ml.) was refluxed for 2 hours in the presence of anhydrous aluminium chloride (1 g.). After removal of the solvent, cracked ice (10 g.) and concentrated hydrochloric acid (5 ml.) were added. It was left overnight, the precipitate filtered and purified by crystallization as yellow needles from ethanol-water (0.11 g., 50%), m.p. 242-243°.

Anal. Calcd. for C₉H₆O₄: C, 60.68; H, 3.39. Found: C, 60.99; H, 3.62.

Lack of Wessely-Moser rearrangement resulted from methylation of this product by the method adopted for 11, which gave 5,8-dimethoxychromone.

6,7-Dihydroxychromone (18).

This compound was derived from 17 by the procedure adopted for 8 (yield 70%) and purified by crystallization as needles from ethanol-water, m.p. about 255° dec.

Anal. Calcd. for $C_9H_6O_4$: C, 60.68; H, 3.39. Found: C, 60.62; H, 3.78.

6,8-Dimethoxychromone (19).

This chromone was synthesized from 2-hydroxy-3,5-dimethoxy-acetophenone (23) by the procedure adopted for 5 (yield 80%) and purified by crystallization from water, m.p. 143-145°.

Anal. Calcd. for $C_{11}H_{10}O_4$: C, 64.07; H, 4.89. Found: C, 63.83; H, 4.97.

68-Dihydroxychromone (20).

This compound was derived from 19 by the procedure adopted for 8 (yield 50%) and purified by crystallization as needles—from ethanol-water, m.p. about 260° dec.

Anal. Calcd. for $C_9H_6O_4$: C, 60.68; H, 3.39. Found: C, 60.90; H, 3.57.

Acknowledgements.

We should like to thank Dr. M. Canepa Villa for the microanalyses and Dr. S. Morasso and A. Panaro for running the ir and nmr spectra.

REFERENCES AND NOTES

- (1) S. Fukushima, T. Noro, Y. Saiki, A. Ueno and Y. Akahori, *J. Pharm. Soc.* Japan, **88**, 1135 (1968).
- (2) Ratna Pendse, A. V. Rama Rao and K. Venkataraman, Phytochemistry, 12, 2033 (1973).
- (3) D. Bourwieg, B. Janistyn, M. Stocker and R. Pohl, *Arch. Pharm.*, 307, 131 (1974).
- (4) G. Romussi and G. Ciarallo, *Phytochemistry*, 13, 2890 (1974).
- (5) These bands are similar to those for flavonoids, T. A. Geissman, "The Chemistry of Flavonoid Compounds," Pergamon Press, Inc., (1962).
- (6) I. Degani, R. Fochi and G. Spunta, Boll. Sci. Fac. Chim. Ind. Bologna, 26, 6 (1968).
- (7) T. J. Mabry, K. R. Markham and M. B. Thomas, "The Systematic Identification of Flavonoids," Springer, Heidelberg (1970).
- (8) Sodium methoxide spectra were recorded immediately after the addition of three drops of the reagent solution. Since the spectra of compounds, which have no free hydroxyl groups show no change and the spectra of chromones with free hydroxyl groups exhibit shifts of Band I and II without changes in the shapes of spectral curves, it may be inferred that this procedure produces ionization only.
- (9) R. D. H. Murray and P. H. McCabe, *Tetrahedron*, 25, 5819 (1969).
- (10) R. D. H. Murray, P. H. McCabe and T. C. Hogg, *ibid.*, 25, 5839 (1969).
- (11) C. T. Mathis and J. H. Goldstein, Spectrochim. Acta, 20, 871 (1964).
- (12) Iswar-Dass, N. Narasimhachari and T. R. Seshadri, Proc. Indian Acad. Sci., 37A, 599 (1953).
- (13) A. A. Shamshurin and M. A. Yampol'skaya, Zh. Obshch. Khim., 34, 535 (1964).
- (14) A. Murata, T. Suzuki and T. Ito, Bunseki Kagaku, 14, 630 (1965).

- (15) P. P. Joshi, R. T. Ingle and B. V. Bhide, J. Indian Chem. Soc., 36, 59 (1959).
 - (16) E. David and St. v. Kostanecki, Ber., 35, 2547 (1902).
- (17) St. v. Kostanecki, L. Paul and J. Tambor, *ibid.*, 34, 2475 (1901).
- (18) W. Baker, N. C. Brown and J. A. Scott, J. Chem. Soc., 1922 (1939).
 - (19) W. Baker, ibid., 956 (1939).
- (20) S. Raychauduri, T. R. Seshadri and S. K. Mukerjee, *Indian J. Chem.*, 11, 1228 (1973).
- (21) N. Narasimhachari, D. Rajagopalan and T. R. Seshadri, J. Sci. Ind. Research (India), 12, 287 (1953).
- (22) G. H. Jones, J. B. D. Mackenzie, A. Robertson and W. B. Whalley, *J. Chem. Soc.*, 562 (1949).
 - (23) T. H. Simpson, J. Org. Chem., 28, 2107 (1963).
- (24) N. Narasimhachari, D. Rajagopalan and T. R. Seshadri, J. Sci. Ind. Research (India), 11B, 347 (1952).
 - (25) E. David and St. v. Kostanecki, Ber., 36, 125 (1903).
- (26) S. Raychauduri (20) gives for 5,6- and 5,8-dimethoxy-chromone the same m.p. 124-125°.